Reinforcement learning transfer via sparse coding

نویسندگان

  • Haitham Bou-Ammar
  • Karl Tuyls
  • Matthew E. Taylor
  • Kurt Driessens
  • Gerhard Weiss
چکیده

Although reinforcement learning (RL) has been successfully deployed in a variety of tasks, learning speed remains a fundamental problem for applying RL in complex environments. Transfer learning aims to ameliorate this shortcoming by speeding up learning through the adaptation of previously learned behaviors in similar tasks. Transfer techniques often use an inter-task mapping, which determines how a pair of tasks are related. Instead of relying on a hand-coded inter-task mapping, this paper proposes a novel transfer learning method capable of autonomously creating an inter-task mapping by using a novel combination of sparse coding, sparse projection learning and sparse Gaussian processes. We also propose two new transfer algorithms (TrLSPI and TrFQI) based on least squares policy iteration and fitted-Q-iteration. Experiments not only show successful transfer of information between similar tasks, inverted pendulum to cart pole, but also between two very different domains: mountain car to cart pole. This paper empirically shows that the learned inter-task mapping can be successfully used to (1) improve the performance of a learned policy on a fixed number of environmental samples, (2) reduce the learning times needed by the algorithms to converge to a policy on a fixed number of samples, and (3) converge faster to a near-optimal policy given a large number of samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Reinforcement Learning Transfer Using a Sparse Coded Inter-task Mapping

Reinforcement learning agents can successfully learn in a variety of difficult tasks. A fundamental problem is that they learn slowly in complex environments, inspiring the development of speedup methods such as transfer learning. Transfer improves learning by reusing learned behaviors in similar tasks, usually via an inter-task mapping, which defines how a pair of tasks are related. This paper...

متن کامل

Learning Sparse Representations in Reinforcement Learning with Sparse Coding

A variety of representation learning approaches have been investigated for reinforcement learning; much less attention, however, has been given to investigating the utility of sparse coding. Outside of reinforcement learning, sparse coding representations have been widely used, with non-convex objectives that result in discriminative representations. In this work, we develop a supervised sparse...

متن کامل

Learning in Multi-agent Systems with Sparse Interactions by Knowledge Transfer and Game Abstraction

In many multi-agent systems, the interactions between agents are sparse and exploiting interaction sparseness in multiagent reinforcement learning (MARL) can improve the learning performance. Also, agents may have already learnt some single-agent knowledge (e.g., local value function) before the multi-agent learning process. In this work, we investigate how such knowledge can be utilized to lea...

متن کامل

A Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique

In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012